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A PERTURBATION THEORY OF ISOELECTRONIC MOLECULES :
CONVERGENCE OF SERIES FOR ONE DIMENSIONAL DELTA POTENTIAL MODEL®
by

Pearl S. C. Wang and W. Byers Brown

ABSTRACT

The perturbation theory of heteronuclear molecules based
on isoelectronic homonuclear molecules developed by Chang
and Byers Brown is applied to the delta potential model. The
radii of convergence of the series expansions for the energy
and dipole moment are obtained. The errors in the perturbation
treatment due to neglect of higher order terms are calculated.
The results tend to support the application of this theory

to the CO-N2 problem.

* This research was supported by the following grant:

National Aeronautics and Space Administration Grant NsG-275-62.




Introduction

The quantum mechanical problem for the heteronuclear
diatomic molecule AB can be solved using a perturbation method
with the isocelectronic homonuclezr molecule as the unperturbed
system. This theory is developed and applied to the isoelectronic
molecules €0 and N, by Chang and Byers Brownl.
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I1f ZA’ ZB are the nuclear charges of A and B,
respectively, then the Hamiltonian for the molecule AB can be

written as H = HO + AV where HO is the Hamiltonian for the

isoelectronic homonuclear molecule and
A= (ZA"23>/(ZA+ZS>

is the perturbation parameter. The electronic energy can be

formally written as

E= Eo + EEN v+ ..

where all terms involving odd powers of A vanish because
of the symmetry of the unperturbed system. For the same
reason, the series expansion for the dipole moment of the

molecule AB <contains only odd powers of A s that is

<ff> = /A‘) + /13)3 +*/AS,\5 4 . (2)



In order to justify the treatment of CO based on N2
mentioned above, it is necessary to know the radii of convergence
of the series (1) and (2). Unfortunately, this is almost
impossible for the CO-N2 problem, which involves fourteen
electrons. The object of this paper is to investigate the
convergence of series (1) and (2) for the delta potential
model introduced by Frost (2). This simplified problem can
be solved exactly and it is hoped will reproduce the principle

features of the actual molecular problem.

Delta function potential model for one-electron diatomic molecules

The model for a one-electron molecule AB consists of
an electron moving along the X -axis with potential energy

(atomic units)
U= — Z8(x+4R) — 2,8(x ~3R), (3)

where S(X) is the Dirac delta function and R 1is the
internuclear separation. The Hamiltonian for this model is

therefore

YR
# = —-il::’_ — 23K +ER) — 238(x ~LR) . (4)




The Schrgdinger equation can be solved exactly (Frost, 1956).

Two bound state wave functions exist, of the form
A
¢ = O #?("’Xlx“‘ ;R‘) A b%(—K(X"iK‘)) (5)

where the two possible values for 2{ are roots of the

equation

Yo () b Bg | 1 - ep(-2pR)] = 0

Y M)y ATg xpl~Xy . (6)
The energy eigenvalues are given by

2
E‘“ﬁb’- (7)

The greater of the two solutions of equation (6) corresponds to

the ground state and is given by

Y, = gf 2ot 2y +[<%p%3>"+ w;&}c%(—%&aﬂ‘} . ®

If we introduce the variables

b= W2, , s-ER e 2= 3T,



then Eq. (7) and (8) can be put into the new forms

E = -L25p>, 7"

lg—_ \ +— Qn’p(-sk)r\jl+)\?’[%(SP7—'] . (8")

"Perturbation expansion of energy

I1f we regard ) as a perturbation parameter then P
may be expanded in even powers of A for ‘A sufficiently

small, that is
2 't
P = P+ £2? il (R 9)

The coefficients Pg > Py s Py etc. are determined by

substituting Eq. (9) into Eq. (8'), expanding the term

| 24 (-sp) AN Lexpespr-11]

in a power series in ) , and equating the coefficients of
equal powers of A on both sides of the equation. The results

for the first three coefficients in Eq. (9)fare




ro = | 4 4‘@("5"0) ’

Po (2 ~o)
Fa. = 2(p,~1) (I =3 +sp) g

lesp, [1 £ (sp X001 — p.‘(l*p»)’-

P# ) 8 Cp—1) (1~ +Spe)

From Eq. (7') we get the coefficients in the series

expansion for energy, Eq. (1):

E, = -3 &b,

2%

Eg_ = - éb}"’PJ—)

€, = — & 27 +2pbe)
&+ L Lo (Pt 2Py

For the case & =1 and ‘Za = 1/2 (neutral molecule)

equations (10) - (15) give the following results

(10)

(1D

(12)

(13)

(14)

(15)



-1.709585

1.295561,

o
i

1.278465, P, p,,

~0.414082, E 0.336601

=
I

-0.204309, E

In Table 1, the expression (E2 + A? Eé) is compared with
the expression (E-EO)/ %2 for s = 1 and different values
of A . These quantities are also plotted in Figure.1l for

in the range (0,1).

Radius of convergence of energy series

In order for the power series for p in equation (9) to

be convergent, we must have
A"[Ju{oc}s\o) -1y < 1. (16)

From equations (8') and (16), the radius of convergence )c_
for the series (9), which is the same as that of the energy

series, is given by
e = |
— (17)

A = [‘Q‘b@‘?)"]z: /\fT-rPZP__——P_z. )

where P, is the solution of the equation




P‘-: [ + iﬂp(:‘s‘kk)ﬂ. (18)
The radius of convergence, Ac_ , and the energy

{ 2, 2
Ee ~ '3_%“' be )

are displayed in Table 2 for a range of values of s .

Dipole moment calculation

The dipole moment with respect to the center of charge

of the heteronuclear molecule AB is

<p> = ¥ p¥ >/, >, (19)

where WL’ is given by equation (5) with

o/b = expcsp)('—% —’|>, (20)
and
— (x —4R + 2R 2% ) . (21)

o=



The dipole moment has been defined to be positive for A_B+ , and
it is taken with respect to the center of charge of the system
so that in the limit when the molecule dissociates into an atom
and an ion ( A'~>~1), < ,L > goes to zero.

By substituting into (19) from equations (5), (20) and (21),

we get

-t
<,,> - (”‘/Z?o)g[“"') +—sqp-.)1-s>e-] - l’k . §22)

The éxpansion of <:rk>> as a power series in A is given
by Eq. (2). The coefficients may be obtained by means of

equations (9) and (22):

(S/iz-°)§[p,~l 4—5((,-1)“}-' —-l} ;

1

/*1

~p[Pras-0-s1

bo —{ +s Coo - *

<
w

,‘“3[P1*’9‘3"z(\%~l) -3 "'/“\[P‘("’si’:*z’)’*/(?o"ﬂ!
Po—1 5 (pe-0*

~
W
H




For $ =1, 2 =0.5, J =1.808925, M, = -8.02496,

s = 30.6846.

The exact values of <p-> have been calculated from
Eq. (22) for the case Zo = 0.5, § = 1 and are listed in
Table 3; the values of /&‘)‘ s (,«J\ *‘,‘*;)‘3) and

(,A‘; "'I"333 A—,ASAS) for the same values of 2_

and $§ are also given. These quantities are plotted in

Figure 2.

We can also expand </’~> in a power series in § if we
have the series for p 1in powers of & . It follows from

Eq. (8') that

P“' 9. ‘—1(“— l)s + @(l_xl-)sl + ... (23)

The expansion of <,~> in powers of 8§ 1is therefore
<ﬁn=#MHH&%—sﬂu#ﬂ%ruwﬂﬂ#*um

For the case Z = ifz , N =1/7 =0.1428, we get

<p> = (0.139942) s? - (0.142798) s° + ...

The exact values of <p> for various § and Zo = 0.5,
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) = 0.142857 were obtained from Eq. (22) and are listed in

Table 4. The plot of <,A> against § is given in Figure 3.

Radius of convergence of dipole moment series

The series (/A\X {—,«.g)‘s‘\—-..... ) in Eq. (2) converges
for all A £ Ao where XCCS) is the radius of
convergence of the power series expansion for p for any
fixed value of § . This can be seen as follows. Equation (22)

may be re-written in the form

~| l 1
(I.o = (sk/za)[yb-wsq,.-o‘} {,:;Q;) —~ pot 1 =S {pa~) } , (25)
where

2.
Loy = PP vSGb) (prpmed =X (26)
P - 4—-5(‘,0—0"'

and is of second order in /\
In the case ,".(,\) = 0 it follows from equations (8')
and (10), that P) po for all s> O and A in the range

(0) 1) . Also

b ~b +3(p-pXprpa—2) = —Q&p(—sk)«]\ut [explasp)-1] — 24p(-5ps)

+3 {—up(_zsp)g\ + A [=xb (25p) -1]} — =4p (- 13&07] >
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so that for A S},_ )

P-bo +3 lppprpe=2) € 2pl-sp)2  — 2xpl~sp)
q—s[ 2 exp(—2cp) — exp(- 2,‘“)‘3
< expl—sh) + S €xfp (—2sp,)
= kol + s((,p\)"_
Hence for £ >0

Py € PP 35 Gp—po 3P+ po-2)
’f:gf'( + 5 ({p—0)> s b,

In the case *F’Q‘) < O , we have

Py P=D+3G-0>-dr — (p-D —3¢p-0"
=l &8 (po-) Y

= (pmv wstp0rosAt
po—1 5 (po~00*

\"
!

since

(p-1) rs Cp—z)"—skl-— -0 + sC—A*)eup (~23p)

\%
o
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In either case, the inequality I1§(M) ] <€ | is
always satisfied for all AL A, (s) . The expansion

of the function

(Lrgwm)

in powers of A is valid for all A in this range.
Therefore, the radius of convergence of the dipole moment series

is greater than or equal to de(s)  for all values of § .

Conclusion

It is interesting to attempt to use the results obtained
in this paper to assess the application of the theory to CO
based on N2 .

The neutral case has a ZO value of 0.5, and if we use
an R value of 2.0, which is about the equilibrium distance
of CO and N2 , we get an s value of 1.0, From Table 2,
we see that the radius of convergence in this case is 0.2649,

which is greater than the A value for the CO-N2 problem

which is 1/7 = 0.1428.

2
From Table 1 we see that when § = 1, the leading term A E)_
differs from (E - Eo) by less than 5.2 per cent for

)\ < >\Q:~. 0.26% 9 . In Table 3 the term A/A,




differs from the exact <)a>- value by less than 10.1 per cent
for X £ 0.{S . The results obtained from the model therefore

support the CO-N2 perturbation treatment.
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TABIE 1

Error in Energy E through Second and Fourth Orders divided by
)\2, for s=1, Z,=1/2

(-]

)N (E-e)/\* (E-E-NEYNE  (6-£.- Ne-AE /N
0 -0.414082 0 0
0.05 -0.413247 -0.000835 -0.000006
0.10 -0.410793 -0.004124 -0.000077
0.15 -0.406884 -0.007198 -0.000375
0.20 -0.401755 -0.012327 -0.001137
0.25 -0. 395654 -0.018428 -0.002609
0.264932 ~0.393688 -0.020394 -0.003231
0. 30 -0.388864 -0.025218 -0.005076
0.35 -0.381619 -0.041233 -0.008770
0.40 -0.374121 -0.053856 -0.013895
0.45 -0.366533 -0.068162 -0.020613
0.50 -0.358978 -0.084888 -0.029046
0.55 -0.351547 -0.101822 -0.039287
0.60 -0. 344305 -0.121176 -0.051399
0.65 -0.337294 -0.142214 -0.065425
0.70 -0.330537 -0.164934 -0.081489
0.75 -0.324051 -0.189338 -0.099307
0.80 -0.317842 -0.215425 -0.119184
0.85 -0.311907 -0.243194 -0.141019
0.90 -0.306243 -0.272647 -0.164808
0.95 -0.300841 -0.303782 -0.190541
1.00 -0.295691 -0.33660l -0.218210



Table 2

Radius of Convergence )\c of energy as a function of Internuclear

Separation s = RZ,

s M E./22
0.10 1.367565 -2.293183
0.20 0.917867 -1.913551
0.30 0.710832 -1.655032
0.40 0.583663 -1.466849
0.50 0.494569 -1.323473
0.60 0.427567 -1.210542
0.70 0.374690 -1.119313
0.80 0.331568 -1.044133
0.90 0.295560 -0.981182
1.00 0.264932 -0.927770
1.20 0.215499 -0.842298
1.40 0.177267 -0.777308
1.60 0.146879 -0.726631
1.80 0.122266 -0.686366
2.00 0.102078 -0.653923
2.10 0.093328 -0.640049
2.20 0.085352 -0.627501
2.30 0.078071 -0.616133
2.40 0.071416 -0.605815
2.50 0.065327 -0.596440
3.00 0.041748 ~0.560730

4.00 0.016670 -0.523850



Table 3

Dipole Moment as a Function of A for 8 =1, 2, = 1/2

h) 4’0 [‘A ’A.) 'r/lA;)\s <p> - p
0.01 0.018082 0.018090 0.018082 -0.000008
0.05 0.089452 0.090446 0.089444 -0.000994
0.10 0.173164 0.180892 0.172868 -0.007728
0.15 0.246388 0.271338 0.244254 -0.024950
0.20 0. 306020 0.361786 0.297586 -0.055766
0.25 0. 350710 0.452232 0. 326842 -0.101522
0.264932 0.361122 0.479242 0.330016 -0.118120
0.30 0. 380556 0.542678 0. 326004 -0.162122
0.35 0. 396656 0.633122 0.289054 -0.236466
0.40 0.400624 0.723571 0.209972 -0.322947
0.45 0. 394244 0.814016 0.082748 -0.419772
0.50 0.379250 0.904462 -0.098658 -0.525212
0.55 0.357202 0.994908 -0. 340244 -0.637706
0.60 0.329434 1.085354 -0.648036 -0.755920
0.65 0.297066 1.175800 -1.028050 -0.878734
0.70 0.261010 1.266248 -1.486314 -1.005238
0.75 0.222014 i.3566%4 -2.0288136 -1.134680
0.80 0.180670 1.447140 -2.661638 -1.266480
0.85 0.137454 1.537586 -3.390742 -1.400132
0.90 0.092746 1.628032 ~4.222164 ~1.535286
0.95 0.046846 1.718478 -5.161922 -1.671632
1.00 0.000000 1.808926 -6.216036 -1.808926



TABLE 4
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Dipole moment as a Function of Internuclear Separation S = K%Q
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4.00

for A = 1/7, Z,= 1/2

(/n>
0.000014
0.000366
0.001518
0.003534
0.006480
0.015420
0.028872
0.047384
0.071542
0.101944
0.139210
0.183940
0.236700
0. 368132
0.632742
1.220874
1.862646
2.440782
2.945250

3.406904



Figure 1.

Figure 2.

Figure 3.
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Legends for Figures

Energy quantities (a.u.) as functions of )
-4 « .
fOl' 5-—- 1’ }o "s_ . — E2 ’ - - (E_E‘)Az

..... E, +)?‘E¥_ .

Dipole moment (a.u.) as function of A

fors =1, 2,25 e

Dipole moment (a.u.) as function of § = Ri:, for

A=1./7, %‘°=)2:.
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